{"created":"2023-10-24T07:08:46.757903+00:00","id":2000080,"links":{},"metadata":{"_buckets":{"deposit":"4faa4969-2cfd-4021-a88b-51736e2a126a"},"_deposit":{"created_by":4,"id":"2000080","owners":[4],"pid":{"revision_id":0,"type":"depid","value":"2000080"},"status":"published"},"_oai":{"id":"oai:niit.repo.nii.ac.jp:02000080","sets":["32"]},"author_link":["58","1329"],"control_number":"2000080","item_4_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1982-09","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"5","bibliographicPageEnd":"508","bibliographicPageStart":"503","bibliographicVolumeNumber":"23","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}]}]},"item_4_description_4":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"計算機システムや順序機械等の動作解析あるいは評価等を行う場合に, それらのシステムの動作をマルコフ連鎖をなすモデルとして表し, そのモデルにおける状態の定常分布を求める必要の生じる場合がある. この分布を求めるための計算量はモデルの状態数nに対してO(n^2)で増加するため, システムの規模が大きくなると計算時間が非常に長くなる. そこで本稿では, 計算量が状態数nに対して O(n)になる一つの近似解法を提案する. この方法ではモデル中の各状態について, すべての状態からその状態に遷移する確率の和を使ってn状態モデルを2状態モデルに縮退させるという考え方を基本にしている. この解法の精度を確認するため, コンピュータを用いたシミュレーションを行った. その結果, モデル中の各状態について, すべての状態からその状態へ遷移する確率の和が1±0.3以内である場合には, 近似値の誤差は約10%以内であるという結論が得られた.","subitem_description_type":"Abstract"}]},"item_4_publisher_32":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会"}]},"item_4_source_id_7":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0387-5806","subitem_source_identifier_type":"ISSN"}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_4_version_type_15":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"角山, 正博"}],"nameIdentifiers":[{"nameIdentifier":"58","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"内藤, 祥雄"}],"nameIdentifiers":[{"nameIdentifier":"1329","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2023-10-25"}],"displaytype":"simple","filename":"niit2013_23(5)_503-508.pdf","filesize":[{"value":"388 KB"}],"format":"application/pdf","mimetype":"application/pdf","url":{"url":"https://niit.repo.nii.ac.jp/record/2000080/files/niit2013_23(5)_503-508.pdf"},"version_id":"83a2ade8-c8fd-40e0-b236-608243fd15be"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"マルコフ連鎖で表されるシステムモデルの定常分布の近似値を求める方法","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"マルコフ連鎖で表されるシステムモデルの定常分布の近似値を求める方法","subitem_title_language":"ja"}]},"item_type_id":"4","owner":"4","path":["32"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2013-09-10"},"publish_date":"2013-09-10","publish_status":"0","recid":"2000080","relation_version_is_last":true,"title":["マルコフ連鎖で表されるシステムモデルの定常分布の近似値を求める方法"],"weko_creator_id":"4","weko_shared_id":-1},"updated":"2025-06-10T08:23:00.896993+00:00"}