非平衡流れ場に適応可能な飛雪現象のモデリング (その11) 雪粒子が流れ場に及ぼす影響を表現するサブモデルの開発

飛雪現象	Saltation	Canopy モデル	正会員	〇大風	翼 ^{*1} 翼	同	高野	芳央 ^{*2}
CFD	<i>k-ε</i> モデル	吹雪風洞実験	同	持田	灯 ^{*3}	同	富永	禎秀 [*]

1. **はじめに** 筆者らは、これまで都市・建築空間の積雪分 布予測に適応可能な飛雪現象のモデリングについて検討を進 めてきた¹⁾。しかしながら、雪面から雪粒子が再飛散する際 には、雪面付近で飛雪空間密度が高密になるにも関わらず、 雪粒子が流れ場へ及ぼす影響は全く考慮していなかった。

そこで本報では、飛雪粒子が流れ場に及ぼす影響を表現す るサブモデルの開発行い、吹雪境界層を対象とした風洞実験 ²⁾と比較することでモデル係数の最適化を行ったので、その 結果を示す。

2. 吹雪境界層を対象とした風洞実験 実験は(独)防災科学 技術研究所雪氷防災研究センター新庄支所の低温風洞を用い て実施した。詳細は文献 2 を参照されたい。図 1 に風洞実験 の概略を示す。ふるいにかけた雪粒子(loose snow)を風洞内に 敷き詰めることによって、発達過程の saltation 層を作り出し た。loose snow の始まる位置を x = 0.0[m]とし、x = 1.0、3.0、

[P]	村田 刈	[0]	虽水	傾穷
6.0、9.0、11	.5[m]の 5 測定線上に	において、針	沿直方向	に9点、
計 45 点で	風速・飛雪流量を測	則定した。責	最も風下	側の x=

11.5mでは、境界層、saltation 層はともにほぼ平衡状態に達していた²⁾。
3. 粒子の影響を表現する付加項の概要 移動物体の Canopy エデル³⁾の概念を採用することで、たるエデルの支配支援する

モデル³⁾の概念を援用することで、*k-ε* モデルの支配方程式に、 飛雪空間密度に応じた付加項を施し、雪粒子が流れ場へ及ぼ す影響を表現した。それぞれの方程式を表 1 に、雪粒子の影 響を表現する付加項を表 2 に示す。なお、記号については次 項の記号表を参照されたい。

本研究では、近似的に雪粒子の平均移動速度を平均風速の R_p (0 < R_p < 1)倍であると仮定した。ここで、本来、抗力係数 C_f や雪粒子の平均移動速度と風速の比 R_p は、各々詳細な実験 より別途決定されるものであるが、実現象において雪粒子の 粒径や形状のバラつきを考慮した上で、平均的な値を決定す ることは難しい。そこで、本研究ではまず初歩的な検討とし て、雪粒子を単一粒径の球と仮定し、これに対応する抗力係 数を決定した。続いて、前節で述べた吹雪風洞実験を対象と して 2 次元の流体計算を行い、パラメトリックスタディによ り流速に対する粒子の速度の比を表す R_p を同定し、(8)式に 含まれるモデル係数 C_{pc} の最適値を推定した。代表面積を与 える(9)式中に含まれる粒径 D は $D = 1.0 \times 10^4$ [m]とし、抗力 係数 C_f は $C_f = 4.0$ とした^{注1)}。

4. パラメトリックスタディによるモデル係数の同定

4.1 パラメトリックスタディの概要 解析条件を表3に示す。 粒子が流れ場に及ぼす影響を分析するためには、実験結果と 解析結果の飛雪空間密度が等しい必要がある。*R_p と C_{pe} の流* れ場への影響をより正確に分析するために、本研究では飛雪 空間密度については輸送計算を行わず、解析領域内に実験値 を補間して求めた分布を固定し、流れ場が定常状態になるま で計算を行った。

 R_p を 0.25~1.00 に、 C_{pe} を 0.0~3.0 に段階的に変化させて解 析を行い、はじめに流速に対する粒子の速度の比を表す R_p の おおよその値を同定し、その値を用いて C_{pe} が流れ場に与え

表 2 雪粒子の影響を表現する付加功	頁	表 3 解析条件		表 4 解析ケース				
$\overline{F - \frac{1}{2} \times C} \times \frac{A}{2} \times (1 - R)^2 / \mu \sqrt{/\mu}^2$	(6)	解析領域	$14(x) \times 1.0(z) \text{ [m]}$ $137(x) \times 3(y) \times 57(z)$		設定風速 ^{注2)} [m/s]	R_p	$C_{p\varepsilon}$	備考
$I_i = \frac{1}{2} \wedge C_f \wedge \frac{1}{V} \wedge (I - K_p) \langle u_i / V \langle u_j \rangle $ (0)		- ハウマエ刀酌	15.(()へ5(()へ5)(2) (₍)、主監値を補問して利用した	Case0	7.0	/	/	付加項なし
$E (1, p)/\lambda E$	-	法1 培用冬州	$\langle v \rangle = \langle w \rangle = 0 \& \ \ b \land c \land v \land v$	Case1	7.0	0.85	1.0	
$F_k = (1 - K_p) \langle u_i \rangle F_i$	(7)	加八現外米什	k:実験値を補間して利用した。	Case2	7.0	0.90	1.0	
$3\langle \Phi \rangle V$			$\varepsilon: 局所半衡の過程 (P_k = \varepsilon) より与えた。$	Case3	7.0	0.95	1.0	
$F_{\varepsilon} = \frac{1}{L} \times C_{p\varepsilon} \times F_k \qquad (8) \qquad A = \frac{1}{2} \frac{1}{D_{\rho}} \frac{1}{2}$	(9)	移流項スキーム	全輸送方程式にQUICKを使用した。	Case4	7.0	0.90	2.0	
$k = 2D\rho_p$		地表面境界条件	z ₀ 型の対数則を用いた。(z ₀ =1.5×10 ⁻⁶ [m])	Case5	7.0	0.90	3.0	

Modeling of snowdrift in non-equilibrium flowfields

(Part 11) Development of submodel expressing effects of snow particles on flowfield

Tsubasa Okaze et al.

る影響を分析した。本稿で示す解析ケースを表4に示す。

4.2 解析結果 風速は基準高さ z₁₂ (= 0.12[m])における風速 $\langle u_{12} \rangle$ で基準化した^{注3)}。図2に C_{pc} =1.0で固定し、 R_p を変更し たときの x = 11.5[m]における平均風速の鉛直分布を示す。x = 11.5[m]では吹雪は十分に発達していた。R_nの減少とともに雪 粒子が流れ場に及ぼす抗力が大きくなり、雪面付近の風速は 減少した。実験結果と比較すると R_p = 0.90 のものがよく対応 している。R_p = 0.90 は、雪粒子が平均的に流速の 90%の速度 で移動していることを意味する。

図 3 に $R_p = 0.90$ で固定し、 C_{pe} を変更したときの x =11.5[m]における風速の鉛直分布を示す。雪面付近で少し変化 は見られるものの、C_mの変化に伴う風速の変化は小さい^{注 4)}。 これは、雪粒子による直接的な乱れの生成(Fkの影響)に比べ、 雪粒子の影響で雪面付近の平均風速が減少することによる、 速度勾配の増加に伴う乱れの生成(Pkの影響)の方が大きいこ とを示しており、筆者らの風洞実験結果²⁾とも一致する。

図 4 に全測定点における実験結果と解析結果(R_p = 0.90、 Cpc = 3.0)の比較を示す。粒子の影響を表現する付加項を導入 したことにより全体の傾向としても、実験値をよく再現する ことができた。

5. 結論

1) 雪粒子が流れ場へ及ぼす影響を表現する付加項を、移動 物体の Canopy モデルを参考に定式化した。

2) 吹雪風洞実験を対象とした解析を行い、R_n及び C_{nc}の流 れ場への影響を分析した。

3) その結果、 $C_f = 4.0$ に対応する R_p の最適値として、 $R_p =$ 0.90を得た。また、 $C_{pc} = 1.0~3.0$ においては、 C_{pc} の変化が風 速に与える影響は小さいということを確認した。 [謝辞]

本実験を実施するにあたり、(独)防災科学技術研究所雪氷防災研究セ ンター新庄支所の佐藤 威 博士、根本 征樹 博士及びスタッフの 方々からは多大な協力を得た。また、本研究の一部は、日本学術振 興会 特別研究員奨励費(22・4770/大風)の助成を受けた。ここに記 して深甚なる謝意を表します。

[注] 注 1) 粒径を 1.0×10⁴[m]、粒子の相対速度を 1~2[m/s]とすると、 (10)式より粒子レイノルズ数が 10 程度となる。その値を(11)式に示す Schiller and Naumann の実験式 x^{4} に代入すると $C_f \approx 4.0$ が得られるた め、今回はその値を用いた。

$$Re_{p} = \frac{D \cdot u_{p}}{v}$$
(10)
$$C_{f} \left(Re_{p}\right) = \frac{24}{Re} \left(1 + 0.15 Re_{p}^{0.687}\right)$$
(11)

注 2) 設定風速とは、流入面(x = 0.0[m])における境界層高さより上 空の風速のことである。

注 3) 風洞の特性等から、数値解析と実験結果の境界層高さを一致 させるのは難しい。最も高い測定点(z=0.20[m])は、上流において実験 結果は境界層の外、解析結果は境界層の中に位置し、そこでの風速 を用いて基準化した風速では結果の比較が困難である。したがって、 実験結果と解析結果の双方において境界層の中だと思われる、上か ら2番目の測定点(z=0.12[m])の風速で基準化した

注 4) 本研究では、雪粒子の抗力係数 C_fを、雪粒子を球として与えているが、実際には表面に凹凸があり、この値より小さいと推定される。C_fが本研究より小さかった場合、本解析で与えた抗力と等し い抗力を実現するには R_p がより小さい必要がある。すると、 F_k に含 まれる係数(1- R_p)は大きくなり F_{ε} の影響もより大きくなるため $C_{p\varepsilon}$ の 変化に伴う流れ場への影響も大きくなる可能性がある。 [記号]

(f):変数fのアンサンブル平均値(実験の場合、時間平均値) f': 変数fの変動成分

- x, y, z:空間座標の3成分
- [m] (x: 主流方向、y: 主流直行水平方向、z: 鉛直方向) [m/a]

<i>u, v, w</i> : 風速の5成万			[III/S]
(u: 主流方向、v: 主	流直行	水平方向、w: 鉛直方向)	
up: 粒子の相対速度	[m/s]	τ _p : 粒子の緩和時間	[s]
τ_K : コルモゴロフの時間スク	ケール		[s]
<i>ρ_p</i> : 粒子の密度	[kg/m ³]	<i>ρ</i> _f : 流体の密度	[kg/m ³]
ε:粘性消散率	$[m^2/s^3]$	v:動粘性係数	[m ² /s]
Φ _p : 粒子体積率	[-]	Φ :飛雪空間密度	[kg/m ³]
C_{f} : 抗力係数	[-]	<i>C_{pe}</i> :モデル係数	[-]
R _p :流速に対する粒子の速度	度の比	•	[-]
A: 検査体積中に存在する雪	『粒子の	断面積の合計	[m ²]
D・粒径 [m] M	1· 榆杏	体積中の粒子の個数	[個]

- V_p: 粒子1個の体積 [m³/個] V: 検査体積 $[m^3]$
- [参考文献]
- 1) 大風翼、持田灯、富永禎秀、伊藤優、吉野博:風工学シンポジウム論文集 Vol.21、pp101-106、2010.12
- 2) Tsubasa OKAZE, Akashi MOCHIDA, Yoshihide TOMINAGA, Masaki NEMOTO, Takeshi SATO, Yasutomo SASAKI, Kazusato ICHINOHE: J. Wind Eng. Indus. Aerodyn., 2012 (in press)
- 田畑侑一、持田灯、今野尚子、菊池文、丸山敬、萩島理、谷本潤:日本建築 3) 学会環境系論文集、第76巻、第667号、pp831-837、2011.9
- 4) 日本混相流学会: 混相流ハンドブック、朝倉書店、2004

JSPS Research fellow, Graduate School of Eng., Tohoku Univ., Dr. Eng.

東北大学大学院 工学研究科 *1 日本学術振興会特別研究員(PD)・博士(工学) *2 東北大学大学院 工学研究科 大学院生・博士課程前期

*3 東北大学大学院 工学研究科 教授・工博

*4 新潟工科大学工学部建築学科 教授・博士(工学) Graduate Student, School of Eng., Tohoku Univ. Prof., Graduate School of Eng., Tohoku Univ., Dr. Eng. Prof., School of Eng., Niigata Inst. of Technol., Dr. Eng.