非平衡流れ場に適応可能な飛雪現象のモデリング (その10)単体建物周辺の野外観測との比較に基づく飛雪モデルの検証

飛雪空間密度2 つの輸送方程式雪の落下速度雪の再飛散CFD

1. **はじめに** 筆者等は既報^{文1)}において、降雪粒子及び雪面 から舞い上げられた球形状の粒子の各々に対して、輸送方程 式を解く形式の新たな飛雪モデルを提案の提案を行ったが、 雪面からの雪の再飛散に関わるモデル係数の検討や実験結果 との定量的な比較が課題として残されていた。

本研究では、既往の屋外観測結果^{2 2)}を対象に、モデル係数 が建物周辺の積雪分布へ及ぼす影響について検討を行い、積 雪分布の定量的な比較を行った。

2. 飛雪モデルの概要 (詳細は文献1参照)

2.1. 2つの飛雪空間密度の輸送方程式 表1に飛雪モデルで 用いる方程式群をまとめて示す。①複雑な結晶形状をしてい る降雪起源の雪粒子の空間密度 $\langle \Phi_{sky} \rangle$ 、②雪面との度重なる衝 突を繰り返すことによって複雑な結晶形状が破壊され、降雪 粒子の粒径に比べ、より小さな球形状になった雪面起源の雪 粒子の空間密度 $\langle \Phi_{surf} \rangle$ の各々の輸送方程式((1), (2)式)を解くこ とで、飛雪現象を予測するものである。

2.2. 雪面における雪粒子の質量収支と積雪深の算出

積雪深を算出するために雪面第一セルの各々の雪面におい て雪粒子の質量収支を考えた。降雪起源の雪の堆積量 $D_{sky}(5)$ 式)、雪面から再飛散した雪の堆積量 $D_{surf}((6)式)$ および摩擦応 力による雪面からの雪の削剥量 $E_{surf}((7)式)$ の収支より、正味の 堆積量 $M_{total}[kg/s]$ で(8)式で与えた。積雪深の変化量 $\Delta z_s [m/s]$ は M_{total} の値を積雪密度 $\rho_s [kg/m^3]$ と水平断面積 $\Delta x \Delta y [m^2]$ で除し、 (9)式から与えた。

削剥発生時($\langle u^* \rangle > \langle u^*_h \rangle$)の雪面の摩擦応力による単位時間当たりの削剥量 E_{surf} [kg/s]は、Anderson 等^{χ 3})、Shao 等^{χ 4})が、飛砂を対象として、単一粒径の粒子が空気の摩擦応力により表面から飛び出す質量流量を表現できると提案しており、本研究もこれに倣った((7)式)。なお本研究では(7)式中の無次元のモデル係数 ζ を変化させて検討ケースとした(表2参照^{\pm 1}))。

3. 立方体周辺の飛雪現象の数値予測

3.1. 解析概要 老川等^{文 2)}が北海道工業大学のグラウンドに

正会員 同	〇富永 持田	禎秀 ^{*1} 灯 ^{*3}	同	大風	翼	*2
表 1	2 つの輸送	方程式を月	用いた飛雪:	モデル ^{文 1)}		
飛雪空間密度の	輸送方程式					
$\frac{\partial \left\langle \Phi_{sky} \right\rangle}{\partial t} + \frac{\partial \left\langle \Phi_{s} \right\rangle}{\partial t}$	$\frac{\partial u_i}{\partial x_i} + \frac{\partial \langle \Phi}{\partial x_i} + \frac{\partial \langle \Phi}{\partial x_i}$	$\frac{\partial e_{sky}}{\partial x_3} \left\langle wf_{sky} \right\rangle =$	$= \frac{\partial}{\partial x_i} \left[\frac{v_i}{\sigma_s} \left(\frac{\partial \langle \mathbf{q} \rangle}{\partial \mathbf{q}_s} \right) \right]$	$\left[\frac{\Phi_{sky}}{\partial x_i}\right]$	((1)
-/-) -/-	1/1 -/	- \/ -	ν Γ <i>(</i>	-/- \\]		

 $\frac{\partial \langle \Phi_{surf} \rangle}{\partial t} + \frac{\partial \langle \Phi_{surf} \rangle \langle u_i \rangle}{\partial x_i} + \frac{\partial \langle \Phi_{surf} \rangle \langle wf_{surf} \rangle}{\partial x_3} = \frac{\partial}{\partial x_i} \left[\frac{v_i}{\sigma_s} \left(\frac{\partial \langle \Phi_{surf} \rangle}{\partial x_i} \right) \right]$ (2) \$\phi\zeta\zeta T\varepsilon \frac{1}{2} \mathbf{R}\frac{1}{2} \mathbf{R}

$$\frac{\nu_{t}}{\sigma_{s}} \left(\frac{\partial \langle \Phi_{sky} \rangle}{\partial x_{3}} \right) \Big|_{surface} = 0$$
(3)

$$\frac{v_t}{\sigma_s} \left(\frac{\mathcal{C}(\Phi_{surf})}{\partial x_3} \right) \Big|_{surface} = \frac{|E_{surf}|}{\Delta x \Delta y}$$
(4)

$$\frac{|\Pi O\rangle \equiv O/\underline{q} \equiv \mathbf{u} \cdot \mathbf{x}}{D_{sky} = -\langle \Phi_{sky} \rangle_{\rho} \langle w f_{sky} \rangle \Delta x \Delta y}$$
(5)

$$D_{surf} = -\left\langle \Phi_{surf} \right\rangle_{p} \left\langle w f_{surf} \right\rangle \Delta x \Delta y \tag{6}$$

$$E_{surf} = -\frac{\pi \zeta}{6} \rho_i \langle u^* \rangle \left[1 - \frac{\langle u^* \rangle}{\langle u^* \rangle^2} \right] \Delta x \Delta y \qquad for \quad \langle u^* \rangle > \langle u^* \rangle$$
(7)

$$M_{total} = D_{sky} + D_{surf} + E_{surf}$$
(6)

$$\Delta z_s = \frac{n_{total}}{\rho_s \Delta x \Delta y} \tag{9}$$

て日別積雪深の詳細分布を測定している 1 辺 1[m]の単体立方 体建物モデル周辺の流れ場と積雪深分布を対象とし、低風速 で風速が安定していた実験ケース SN19(文献 2 参照、1998 年 1 月 14 日 ~ 1 月 15 日)を解析対象として選定した^{注2)}。また、雪 粒子の物性に関するパラメータは表 3、解析条件等は表 4 参照 ^{注 3)}。流入面における平均風向・風速は、老川等が積雪深観測 時に建物風上側で測定している結果のうち降雪時間 9 時間^{注4)} での平均値とした。降雪起源の雪の空間密度(Φ_{sky})は、降雪時 間の基準積雪深が、老川らの実測における基準点での日積雪 深増加量(0.1[m])と等しくなるよう与えた^{注5)}。

3.2. 野外観測と解析結果の比較 積雪深はすべて基準点での日積雪深増加量(0.1[m])で基準化している。図1に老川らの 野外観測結果^{x2)}を、図2にCFDにより予測した積雪深の水平 分布を示す。いずれの解析結果も、建物側方の剥離域で吹き

Modeling of snowdrift in non-equilibrium flowfields

(Part10) Validation of drifting snow model based on the comparison with field measurement around a building Yoshihide TOMINAGA et al.

表 2 検討ケース							
Case	モデル伊	系数 ζ	備考				
Case 1	1.0×10-3		Shao 等の係数 ^{×4)} と同オーダー				
Case 2	1.0×10 ⁻⁴						
Case 3	1.0×10-5						
Case 4	1.0×10 ⁻⁶						
表3 雪粒子に関するパラメータ							
降雪起源の雪の落下速度			$w f_{sky} \rangle$	- 1.0[m/s]			
雪面起源の雪の落下速度($ wf_{surf}\rangle$	- 0.2[m/s]			
限界摩擦速度(u* _t)				0.20[m/s]			
雪面の粗度長 zo				1.0×10 ⁻⁴ [m]			
	積雪密度ρs			100.0[kg/m ³]			
表 4 解析条件							
		$15H(x_1) \times 10H(x_2) \times 5H(x_3)$					
解析領	域	$15H(x_1) \times 10$	$H(x_2) \times 5H(x_3)$				
解析領	域 公判	$15H(x_1) \times 10$ $72(x_1) \times 61(x_1)$	$H(x_2) \times 5H(x_3)$ $x_2) \times 42(x_3)$				
解析領 メッシュ	域 分割	15H(x1)×10 72(x1)×61(x 最小メッシ	$H(x_2) \times 5H(x_3)$ $(x_2) \times 42(x_3)$ (ユ幅は $H/20$ と	した。			
解析領 メッシュ	域 分割	15 <i>H</i> (<i>x</i> ₁)×10 72(<i>x</i> ₁)×61(<i>x</i> 最小メッジ (<i>u</i> ₁), (<i>u</i> ₂)は	$H(x_2) \times 5H(x_3)$ $f_2) \times 42(x_3)$ $f_2 = 0.14$ のべき	した。 乗則で、主流方向の平均			
解析領 メッシュ 	域 分割	15 $H(x_1)$ ×10 72 (x_1) ×61 $(x$ 最小メッシ $\langle u_1 \rangle, \langle u_2 \rangle$ は 風速は 3.7	$H(x_2) \times 5H(x_3)$ $(-2) \times 42(x_3)$ $(-2) \times 42(x_3)$ $\alpha = 0.14 のべき [m/s]。 \langle u_3 \rangle = 0.0$	した。 乗則で、主流方向の平均			
解析領 メッシュ 流入境	域 分割 界	15 <i>H</i> (<i>x</i> ₁)×10 72(<i>x</i> ₁)×61(<i>x</i> 最小メッシ (<i>u</i> ₁)、(<i>u</i> ₂)は 風速は 3.7 平均風向に	$H(x_2) \times 5H(x_3)$ $(-2) \times 42(x_3)$ $(-2) \times 42(x_3)$ $(-2) \times 614$ $(-2) \times 614$	した。 乗則で、主流方向の平均 3方向より 10[°]回転した			
解析領 メッシュ 流入境	域 分割 界	15 <i>H</i> (<i>x</i> ₁)×10 72(<i>x</i> ₁)×61(<i>x</i> 最小メッシ (<i>u</i> ₁), (<i>u</i> ₂)は 風速は 3.7] 平均風向は 向き。	$H(x_2) \times 5H(x_3)$ $f_2) \times 42(x_3)$ $4 - 2 - 4 m li th H/20 と \alpha = 0.14 のべき[m/s]_o \langle u_3 \rangle = 0_oは、建物前面法線$	した。 乗則で、主流方向の平均 な向より 10[°]回転した			
解析領 メッシュ 流入境	<u>域</u> 分割 界	15 <i>H</i> (<i>x</i> ₁)×10 72(<i>x</i> ₁)×61(<i>x</i> 最小メッシ (<i>u</i> ₁), (<i>u</i> ₂)は 風速は 3.7] 平均風向に 向き。 <i>k</i> : (<i>u</i> *) ² / <i>C</i> _µ	$H(x_2) \times 5H(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 60(x_3) = 0,$ $(2) \times 60(x_3) = 0,$ $(3) \times 60(x_3) = 0,$ $(4) \times 60(x_3) = 0,$ $(4) \times 60(x_3) = 0,$ $(5) \times 60(x_3) = 0,$ (した。 乗則で、主流方向の平均 な方向より 10[°]回転した えた。			
解析領 メッシュ 流入境	<u>域</u> 分割 界	15 <i>H</i> (<i>x</i> ₁)×10 72(<i>x</i> ₁)×61(<i>x</i> 最小メッシ 風速は 3.7 平均風向に 向き。 <i>k</i> : ⟨ <i>u</i> *⟩ ² / <i>C</i> µ (<i>u</i> *⟩ ² / <i>C</i> µ	$H(x_2) \times 5H(x_3)$ $(x_2) \times 42(x_3)$ $(x_2) = \operatorname{mid} H/20 \ge 1$ $\alpha = 0.14 $ のべきぎ $(m/s]_0, (u_3) = 0_0$ は、建物前面法線 (0.5)の仮定より与、 (のの定より与、 (ないないないないないないないないないないないないないないないないないないない	した。 乗則で、主流方向の平均 む方向より 10[°]回転した えた。 た。			
解析領 メッシュ 流入境 側面・上空	域 分割 界 境界	15 <i>H</i> (<i>x</i> ₁)×10 72(<i>x</i> ₁)×61(<i>x</i> 最小メッシ (<i>u</i> ₁)、(<i>u</i> ₂)は 風速は 3.7 平均風向に 向き。 <i>k</i> : (<i>u^k</i>) ² / <i>C</i> _µ <i>c</i> . 局所平像 Slip 壁としし	$H(x_2) \times 5H(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 6(x_3) = 0,$ $(3) \times$	した。 乗則で、主流方向の平均 む方向より 10[°]回転した えた。 た。			
解析領 メッシュ 流入境 側面・上空 流出境	域 分割 界 境界 界	15H(x ₁)×10 72(x ₁)×61(x 最小メッシ (u ₁)、(u ₂)は 風速は 3.7 平均風向に 向き。 k: ⟨u [*] ⟩ ² /C _µ ε. 局所平復 Slip 壁とし 法線方向の	$H(x_2) \times 5H(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ (3) = 0.6 (3) = 0.6	した。 乗則で、主流方向の平均 (方向より 10[°]回転した えた。 た。 た。			
解析領 メッシュ 流入境 個面・上空 流出境 地表面切	域 分割 環界 環界	15H(x ₁)×10 72(x ₁)×61(x 最小メッシ (u ₁)、(u ₂)は 風速は 3.71 平均風向に 向き。 k (u [*]) ² /C _µ 忘 局所平復 slip 壁とし 法線方向の z ₀ 型の対数	$H(x_2) \times 5H(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(3) \times 6(x_3) = 0.$ $(3) \times$	した。 乗則で、主流方向の平均 け方向より 10[°]回転した えた。 た。 m])を使用した。			
解析領 メッシュ 流入境 側面・上空 流出境 地表面均 建物壁面	域 分割 界 境界 影 境界 境界	15H(x ₁)×10 72(x ₁)×61(x 最小メッシ (u ₁)、(u ₂)は 風速は 3.71 平均風向に 向き。 に (u [*]) ² /C _µ 忘 局所平復 slip 壁とし 法線方向の z ₀ 型の対数 一般化対数	$H(x_2) \times 5H(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(2) \times 42(x_3)$ $(3) \times 6(x_3) = 0.$ $(3) \times 6(x_3) = 0.$ $(3) \times 6(x_3) = 0.$ $(4) \times 6(x_3) = 0.$ $(4) \times 6(x_3) = 0.$ $(5) \times 6(x$	した。 乗則で、主流方向の平均 け方向より 10[°]回転した えた。 た。 た。 m])を使用した。			
解析領 メッシュ 流入境 側面・上空 流出境 地表面均 建物壁面 移流項ス ³	域 分割 界 境界 境界 境界 デーム	15 <i>H</i> (<i>x</i> ₁)×10 72(<i>x</i> ₁)×61(<i>x</i> 最小メッシ (<i>u</i> ₁)、(<i>u</i> ₂)は 風速は3.71 平均8。 <i>k</i> : (<i>u</i> *) ² / <i>C</i> _µ 忘局所平儀 Slip壁とし 法線方向の z ₀ 型の対数 QUICK を	$H(x_2) \times 5H(x_3)$ $(x_2) \times 5H(x_3)$ $(x_2) \times 42(x_3)$ $(x_3) \times 42(x_3)$ $(x_4) \times 10^{-3}$ $(x_4)^{-3}$ $(x_4)^{-3}$ $(x_5)^{-3}$	した。 乗則で、主流方向の平均 け方向より 10[°]回転した えた。 た。 た。 n])を使用した。			

払いにより積雪深が減少し、その風下側に吹きだまりが形成 されており、野外観測の傾向と概ね定性的には対応している。 Case 1 では吹き払いが大きく、Case 4 では吹き払いがごく僅か にしか見られない。これに対し Case 3 では、吹き払い域から その風下側の吹きだまり域まで、野外観測と対応するように 積雪分布がなめらかに広がっている。

図 3 に、建物側方に形成された吹きだまりを通る主流直交 方向の建物後方での断面(x/H = 1.5)の積雪深の鉛直分布を示す。 ζ=1.0×10⁻⁵とした Case 3 の結果が、建物側方に形成された吹 きだまりのピークの位置、大きさとも実測と非常によく一致 している。建物の後方では、いずれのケースも積雪深がほぼ 変化せず 1.0 であるが、野外観測では、積雪深が一様に減少し ている。これは、現状の RANS モデルによる平均風速の予測 では、建物後方の流れ場の周期的変動を再現できていないた めと考えられる。

4. 結論 既往の単体建物モデル周辺の積雪分布実測^{文2)}に、 筆者らの提案する新しい飛雪モデルを適用し、その精度を検 証した。削剥に関するモデル係数ζの値を変化させても、吹き 払いや吹きだまりが形成される位置については、大きな変化 はなかった。野外観測結果との対応という観点では、ζ=1.0× 10-5としたケースが、建物周辺に形成された吹きだまりのピー ク位置、大きさともに観測と比較的よく一致した。

[謝辞] 筆者の大風は、日本学術振興会特別研究員奨励費(22・4770) の助成を受け、本研究の一部を遂行した。

[注釈]

注 1) Shao 等^{文4}は、White 等^{文5)}の石英を用いた風洞実験を参考にζ = 1.74×10-3[-]としているが、値を同定するのに十分な実験データがな

教授・博士(工学)

- 新潟工科大学工学部 *1
- 東北大学大学院工学研究科 *2
- 日本学術振興会特別研究員 PD・博士(工学)
- *3 東北大学大学院工学研究科 教授・工博

図3 無次元積雪深の鉛直分布(建物後方: x/H = 1.5[-])

く、その値は様々な条件により大きく変化する可能性があると述 べている。(7)式を吹雪境界層での雪粒子の飛散に適用した Nemoto 等^{文の}は、Shao 等の検討に習い、ζ~10⁻³のオーダーであるとして、 ζ = 1.0×10⁻³を用いていたが、その後の吹雪境界層を対象とした風 洞実験との比較により、ζ~103のオーダーよりも小さい可能性が あることを示唆している^{文7)}。

- 注 2) 今回は雪面からの再飛散のモデルの精度を検討するために、 建物前方では地吹雪が発生しておらず、建物周辺の風速増速領域 のみで再飛散が発生するような低風速の条件を対象とした。
- 注3) 本解析では、計算 step 毎の雪面の変化は考慮していない。ま た、積雪の変化が流れ場へ及ぼす影響は無視できると仮定した。 定常状態の流れ場で、飛雪空間密度の輸送方程式を解き、(8)式の 積雪深の変化量に降雪時間を乗じて、積雪深を算出した。
- 注4) 観測期間中の降雪時間は文献2に記載がなかったため、最寄 りの札幌管区気象台の AMeDAS における 3 時間毎の天気が北海道 工業大学のグラウンドと等しいと仮定し、降雪時間を9時間と推定 した。
- 注5) 〈Ф_{shy}〉の流入境界条件については、基準積雪深 h*[m]を用いて与 えた。ここで、h*は無風時の降雪時間Δts[s]における建物の影響を受 けない領域の積雪深のことである。雪の落下速度は(wfsky)なので、鉛 直方向の移流フラックスは〈wf_{sky}〉(Φ_{sky}〉[kg/(m²·s)]と書ける。積雪後の 雪が融解や圧密などせず、一定の積雪密度であったと仮定し、Δt_s 間の雪面への雪の流入量を積雪した雪の質量が等しいとすると(10) 式となる。(Φ_{sky})について解き、(11)式を(Φ_{sky})の側面及び上空面の流 入境界条件とした。

$$\left\langle \Phi_{sky} \right\rangle \left\langle w f_{sky} \right\rangle \Delta t_s = \rho_s h^* \qquad (10), \qquad \left\langle \Phi_{sky} \right\rangle = \frac{\rho_s h^*}{\left\langle w f_{sky} \right\rangle \Delta t_s} \qquad (11)$$

[参考文献]

- 1) 大風他: 風工学シンポジウム論文集, Vol. 21, pp101-106, 2010
- 2) 老川他:日本雪工学会誌, Vol.15 No.4, pp3-11, pp283-291, 1999
- 3) Anderson R. S. et al.: Science, vol.241, pp820-823, 1988
- 4) Shao Y. et al.: Boundary-Layer Meteorology 91, pp199-225, 1999
- 5) White B. R. et al.: J. Fluid Mech., Vol.81, pp459-473, 1977
- 6) Nemoto M. et al: J. Geophysical research Vol. 109, D18206, 14, 2004
- 7) 鈴木他: 雪氷研究大会(2009・札幌)講演要旨集, pp179, 2009
- 8) Durbin, P. A.: Int. J. Heat and Fluid Flow 17, pp.89-90, 1996

[記문事]

Xi	:	空間座標の3成分	[1	m]
ui	:	風速の3成分	[]	m/s]
$\langle f \rangle$:	アンサンブル平均		
Φ	:	飛雪空間密度	[]	kg/m ³
u*	:	摩擦速度	[1	m/s]
$u^{*_{t}}$:	限界摩擦速度	[1	m/s]
Wf	:	雪の落下速度	[1	m/s]
M _{total}	:	単位時間当たりの正味の堆積量	[]	kg/s]
D	:	単位時間当たりの堆積量	[]	kg/s]
Ε	:	単位時間当たりの削剥量	[]	kg/s]
h*	:	基準積雪深	[1	m]
Δz_s	:	積雪深の変化量	[1	m/s]
添え字				
sky	:	降雪起源の雪粒子に関する諸量		
surf	:	雪面起源の雪粒子に関する諸量		

Prof., Faculty of Eng., Niigata Inst. of Technol., Dr. Eng. JSPS Research Fellow, Graduate School of Eng., Tohoku Univ., Dr. Eng.

Prof., Graduate School of Eng., Tohoku Univ., Dr. Eng.