コンクリート製遮音壁が 走行路上の風速分布に及ぼす影響

富永禎秀* 地濃貞雄** 地濃茂雄*** (平成12年10月31日 受理)

Effect of Sound-interrupt Fence Made with Concrete on Velocity Distribution on the Road

Yoshihide TOMINAGA^{*}, Sadao CHINO^{**}, Shigeo CHINO^{***}

Sound interrupt fences made with concrete are installed partially along the highway etc. When wind is strong, it is danger that a running vehicle often loses control because the direction and velocity of wind change rapidly at end of the fence. In this study, the velocity distribution around this type of fence is analyzed in detail by CFD technique for examine the effect of the fence which buffers wind velocity. Consequently, it was confirmed that the fence is very effective for controlling the velocity and direction of wind on the road.

Key words : Sound-interrupt Fence, Velocity distribution, CFD

1. はじめに

高速道路などでは近隣住民への騒音対策上,コンクリート版を組み合わせた遮音壁 が設置されているが,強風時には,この遮音壁の端部周辺で風向や風速が大きく変化 するため,走行車輌がハンドルを取られるなどの危険性がある.

そこで本研究では、標準型 \mathbf{k} ・ ϵ モデルに基づく乱流数値シミュレーションによって、 コンクリート製遮音壁が走行路上の風速分布(風向・風速)に及ぼす影響について検 討することとした.すなわち、既設遮音壁での風速分布の解析のほか、風速の急激な 変化を抑制することを意図して、既設遮音壁に風速緩衝壁(以下、緩衝壁と呼ぶ)を 設置した場合、さらには緩衝壁内の隙間の配置パターンを変えた場合についても解析 を試み、その効果を検討した.

なお,緩衝壁の遮音性能については既設遮音壁で遮音されることなので研究の対象 外とした.

2. 数値計算手法の概要

2.1 乱流モデル

乱流モデルは一般的な標準型の k- ϵ 2 方程式モデルを用い, HSMAC 法のアルゴリズ ムにより数値解を得た.基礎方程式は以下の通りである 1^{-3} .

* 建築学科 助教授

*** 建築学科 教授

^{**(}株)アドヴァンス技研 常務取締役・研究開発部長

①解析領域:流れ方向(x)は,風上側緩衝壁より前方に 24m,後方に 48m とした.風に 直交方向は 60m,鉛直方向は 30m とした.

②メッシュ分割は,上記の解析領域を 60(x)×30(y)×40(z)に分割した.ただし Case3 のみ高さ方向に倍の 60(x)×60(y)×40(z)とした.

③流入境界条件:流入風速の鉛直勾配は,地上 10m での風速を 10m/s とし,1/4 の指数分布を仮定して与えた.乱流エネルギーk については,一定値を与えた³⁾. ε は流入面で k の生産項 P_k と局所平衡が成立するとして与えた⁴⁾.

④側面・上空・流出境界:諸量に関して勾配ゼロを課した.

⑤地表面・壁面境界条件:風速は generalized log law⁵⁾を用いた.壁面第1セルの k は,壁面上の k が法線方向に勾配がないとの条件の下に k の輸送方程式を解いて求めた.一方壁面第1セルの ϵ は,輸送方程式を解かずに Launder-Spalding の壁関数⁵⁾ より与えた.

⑥離散化スキーム:空間については、全ての輸送方程式の移流項に QUICK スキーム⁶⁾ を使用した.時間については、1次精度の Full Implicit スキームを使用した.

3. 緩衝壁設置による走行路上の風速分布の変化に関する検討 3.1 解析対象

Fig.1 に示すような片側2車線(1車線6m)の道路を想定した.解析範囲は道路に沿って 60m で 20m を既設遮音壁とした.これは 500mm×4,000mm(厚さ 90mm)の鉄筋コンク リート版を縦に6枚積み上げることにより構成されており,隙間等は存在しない.こ の道路に対して,道路と直交方向に風が吹いた場合の風速分布を解析した.

3.2 検討ケース

検討したケースを Fig.2 に示す.まず Case 1 は既設遮音壁のみで,20m の遮音壁の 隣には何も存在しない場合である.これに対して Case 2 として,高さを段階的に変え た緩衝壁を 20m 設置した場合,Case 3 として格子状に隙間を設けた緩衝壁を 20m 設置 した場合を設定し、以上の 3 ケースについて風速分布を解析した.

3.3 解析結果

各ケースの平均風速ベクトルの分布を Fig.2~5 に示す.

(1)~(3)はそれぞれ,高さ1.0mにおける水平分布,既設遮音壁中央(A-A'断面)に おける鉛直分布,緩衝壁中央(B-B'断面)における鉛直分布である.現状を想定した Case 1 の水平分布(Fig.3(1))では,遮音壁端部での大きな剥離流及びそれに伴う壁 後方での循環流が明瞭に観察され る.すなわち走行車輌はこの部分 を通過する際にハンドルを取られ る危険性がある.遮音壁中心(A-A' 断面)における鉛直分布(Fig.3(2)) を見ると,緩衝壁高さ(3m)の3倍 程度の長さの循環流が形成されて いる.当然のことながら,緩衝壁 のない場所(B-B'断面)における 風速分布(Fig.3(3))は,接近流の 風速分布がそのまま維持されてい る.段階的に低くなる緩衝壁を配 置した Case 2 の水平分布

(1)Type 1 (2)Type 2 (3)Type 3 (4)Type 4 Fig.7 Cases analyzed (Cross section of fence)

(Fig.4(1)) では,既設遮音壁端部での剥離流がさらに弱くなっている. 緩衝壁(B-B' 断面)における風速の鉛直分布(Fig.4(3))を見ると,この部分では緩衝壁が低いため A-A'断面(Fig.4(2))よりも,緩衝壁背後で形成される循環流が小さくなり,緩衝壁高 さの2倍程度の長さとなっている.

一方,格子状の隙間を有する緩衝壁を設置した場合の Case3 の水平分布(Fig.5(1)) は、Case 1 で見られた既設遮音壁端部での剥離流及びそれに伴う壁後方での循環流が 全体的に小さくなっている.さらに緩衝壁の背後では、隙間から噴き出した風の強い 部分と弱い部分が現れている.緩衝壁(B-B'断面)における風速の鉛直分布(Fig.5(3)) では、A-A'断面のように緩衝壁後方で逆流せず、緩衝壁の隙間から噴き出す気流の勢 いが強く、全体的には主風向と同じ向きの風速分布となる.

次に道路上の進行方向に沿ったライン上(Fig. 1 中参照)の風速分布を Fig. 6 に示す. この風速を二乗したものが,車輌が進行時に横から受ける風圧力の関係に対応する. この風速が,短い距離の間に正負が逆転したり急激に大きさが変化するということは, 車輌が受ける風圧力が短時間に急変し,ハンドルを取られるなどの危険を伴うことを 示している.

高さ1.0mで比較した場合(Fig.6(1)),現状のCase1では,既設遮音壁の背後では -1.7m/s程度(負は接近流の方向とは逆向きの風速を示す)であるのに対して,遮音 壁の終端(Y=20m付近)で風速が急激に正値に転じ,約4.0m/sの大きなピークが生じ る.すなわち風速の変化の幅が大きく,またその変化が短い距離で起こっていること がわかる.段階的に低くなる緩衝壁を設置したCase2では,Y=15m付近からなだらか に風速が減少し,Y=26m付近で正に転じ,Y=36m付近で何もない状態の風速に戻る.隙 間を有した緩衝壁を設置したCase3では,緩衝壁(20m<Y<40m)内でほぼ1.0m/s程度 となり,遮音壁のある部分とない部分の中間の風速となっている.

より上方(高さ 2.5m)で比較したものが Fig.6(2)であるが,傾向は同様である. 以上 3 つのケースを比較すると,風速がなめらかに接続されるという点では Case 2 が優れている.しかしながら,Case 2 の場合,緩衝壁がある程度低くなると風速低減

— 47 —

効果は小さくなるので、緩 衝壁を同じ距離で設ける場 合、風速の回復は Case3 に 比べると早い.すなわち出 来るだけ緩衝壁の効果を長 く保たせたい(風速が回を なるまでの時間をなるべく 長くしたい)と考える場間 のある方法が有効であると 考えられる.

従って以下には,緩衝壁 内の隙間配置パターンにつ いて詳細に検討を加えるこ ととした.

4. 緩衝壁内の隙間配置 パターンと風速分 布に関する検討

4.1 検討ケース

コンクリート版の隙間配 置のパターンと風速低減効 果の関係ついて,前章と同 様の数値解析により検討す る。検討ケースの概要を Fig.7 に示す.

この図は緩衝壁を縦に切 断した面を2次元で示して あるが、隙間の配置は前章

Fig.8 Velocity vectors at cross section

の Case3 と同様の千鳥配置を想定している. なおこの隙間を同じ幅でスリット状に設けたとしても、全体的な流れの様相は変化しないものと考えられる.

壁全体の面積に対する隙間面積の割合(開口率)は前節の Case 3 と同様に50%と する.比較のため,開口率0%の遮音壁の解析も行った(Type 1). Type 2 は隙間の 数が3つで,隙間を比較的集中させた場合である. Type 3,4 では隙間の数はそれぞれ 6個,15個で,隙間一つ当たりの面積を小さくし,数を多くした場合である.

4.2 解析結果

緩衝壁周辺における風速ベクトルの鉛直断面の分布を Fig.8 に示す.

Type 1 (隙間なし) では, 緩衝壁上端で剥離した気流が, 緩衝壁後方に流れ込み循

環流を形成している.上空風と逆向きの風が強い場所は緩衝壁高さの2倍程度後方の 地表面付近である.隙間を有する Type 2~Type 4 では Type 1 のような循環流は現れ ていない.隙間を集中させている Type 2 では,隙間からの強い噴出し気流が観察され, 局所的に大きな風速となる.Type 2 の隙間をより分散させた Type 3 でも, Type 2 ほ ど強くはないが,隙間から噴き出した気流が見られる.しかし緩衝壁後方の気流の分 布は比較的均一である.Type 4 は隙間を最も数多く分割したケースであるが,この場 合,緩衝壁の直後からほぼ風速は均一になっている.

Fig.9 に, 緩衝壁より 2.0m 風下側における風速の主流方向成分 U₁の比較を示す.

Type 1 では循環流が形成されているため、高さ 2.5m 以下では負値となる. それに 対して、Type 2~4 ではこの部分ではすべて同程度の正値となり、緩衝壁風下側の逆 流は生じていない. すなわち緩衝壁のある場所とない場所の中間的な風速の場所をつ くるという意味では、どのタイプの隙間配置でも効果がある. しかし Type 2 および 3 の場合、隙間から噴き出す気流が、風速のピークとなって現れている. Type 4 ではこ のようなピークは現れず、緩衝壁高さから地表面近くまで風速はほぼ一定となってい る. 車輌の走行を考えた場合、Type 2 および 3 の様に風速の局所的な分布が出来るこ とは、風圧力の時間的、空間的な変動を引き起こし好ましくない. すなわち Type 4 のような小さな隙間を数多く設ける緩衝壁の方が適していると言える.

5. まとめ

標準型 k・ε モデルに基づく乱流数値シミュレーションによって, コンクリート製遮 音壁が走行路上の風速分布に及ぼす影響について検討した.得られた結論は以下のよ うである.

- ①既設遮音壁の端部では、風速が正負に大きく変化するため、ハンドルを取られるなど車両の走行において危険である。
- ②既設遮音壁の隣に適度な隙間を有する緩衝壁を設けることは、風速の急激な変化を 緩和し、車輌の安定走行において有効である。

③さらにこの緩衝壁内の隙間配置パターンは、同じ開口率の場合、細かな隙間を数多 くあけた方が、風向・風速の変化を抑制する上で効果的である.

主な記号

x_i:空間の3成分(i=1(主流方向;x), i=2(主流横方向;y), i=3(鉛直方向;z))

U_i:風速の3成分, P:圧力

 $k: 乱流エネルギー, \epsilon: k の散逸率, \nu_t: 渦動粘性係数$

参考文献

- Launder, B.E. & D.B. Spalding: Mathematical Models of Turbulence, Academic Press, 1972
- 2) 富永禎秀, 持田灯, 村上周三他:高層建物周辺気流の CFD 解析-各種 RANS モデル の地表面付近の風速予測精度に関する検討-,第 13 回数値流体力学シンポジウム 論文集, 1999
- 3) Tominaga, Y., Y. Mochida : CFD prediction of flowfield and anowdrift around a building complex in a snowy region, J. Wind. Eng. Ind. Aerodyn. Vol. 81, pp. 273-282, 1999
- 4) 義江龍一郎:高層建物周辺気流の CFD 解析,日本建築学会大会学術講演梗概集(環境 工学 II), pp. 675-676, 1999
- 5) Launder, B.E. & D.B. Spalding : The Numerical Computation of Turbulent, Academic Press, 1972
- 6) Leonard, B.P. : The Quick Algorithm : A Uniformly Third-Order Finite Difference Method For Highly Convective Flows, Computer Methods in Fluids, Pentech Press, 1980