ファジィ測度を用いた故障診断における診断精度の向上

Improvement of Accuracy in Fault Diagnosis of Rotating Machines

遠藤尚人+ 堀隼人† 角山正博+ 神野洋一++ 小川昌幸** 佐藤達雄** Naoto Endo† Hayato Hori† Masahiro Tsunoyama† Hirokazu Jinno†† Masayuki Ogawa†† Tatsuo Sato†† †新潟工科大学大学院 ††新潟ウオシントン (株)

†Graduate School of Engineering, Niigata Institute of Technology ††Niigata Worthington Co.,Ltd.

1. はじめに

ファジイ測度を用いた回転機器故障診断システムの診 断精度を向上するためには、診断に用いる振動スペクト ルの重要度及びファジイ測度のパラメータの決定方法が 重要になる. ここでは、これらの決定方法を示すと共に 実際の故障診断に適用した例を示す.

2. ファジイ測度及びファジイ積分

振動法に基づく故障診断を行う際に、振動の各スペク トルが診断に及ぼす影響の度合いを重要度と呼ぶ. 診断 の結果得られる故障原因の可能性は, この重要度に基づ くファジイ測度と各スペクトルの適合度を用いたファジ イ積分によって決められる. ファジイ測度は重要度を用 いて次式に基づいて構成される[1].

$$g_{\gamma}(A_i) = \left(\sum_{x_j \in A_i} g(x_j)\right)^{\gamma} \tag{1}$$

 $g(x_1) + g(x_2) + \dots + g(x_n) = 1, \quad 0 \le \gamma \le \infty$ $X = \left\{x_1, x_2 \cdots, x_n\right\}, \quad A_i \subset X$

ここでXは全体集合、 $g(x_i)$ はスペクトル x_i の重要度を

ファジイ積分には式(2)に示すショケ積分を用いる.

$$(C) \int h(x) dg = \sum_{i=1}^{n} (h(x_i) - h(x_{i-1})) \cdot g_y(A_i)$$
(2)

 $h: X \to [0,1], g: 2^X \to [0,1]$

 $0 \le h(x_1) \le h(x_2) \le \dots \le h(x_n), \quad A_1 \supset A_2 \supset \dots \supset A_n$

ここで、 $h(x_i)$ はスペクトル x_i の適合度を表す。また、

適合度は、設備診断技術者の知識に基づいて構成される メンバーシップ関数によって決められる.

3. 重要度と適合度の変化

重要度の決定方法には種々の方法が考えられる. ここ では重要度を式(3)に基づいて決定し、その割り当て方 を公比 r によって決める.

$$g(x_j) = r^{j-1} / \sum_{k=0}^{n-1} r^k \quad (0 < r)$$
 (3)

次にスペクトルの適合度について、発生した故障に対 応する故障原因(正しい故障原因と呼ぶ)を診断すると きに用いられるスペクトルの適合度は最大値即ち 1 に近く, その他の故障原因(誤った故障原因と呼ぶ)に対応する 診断に用いられるスペクトルの適合度はそれより小さく なる. ここでは、適合度を式(4)に基づいて決め、その 変化の度合いを公比sで決める.

$$h(x_i) = s^{n-i} \qquad (0 < s \le 1) \tag{4}$$

4. 結果と考察

ここでは4個のスペクトルを用いて故障診断を行う場合 を例として示す、正しい故障原因の診断に用いられるス ペクトルの適合度はほぼ最大値に近いため、式(4)のsを 0.9 とする、一方、誤った故障原因の診断に用いるスペ クトルについてはsを0.7とする.式(1)及び(2)を用 いて得られた故障原因の可能性について、正しい故障原 因の可能性が 0.8 以上となり、誤った故障原因の可能性が 0.6 以下となるような式(1) の指数 γ と式(3) の公比rについて検討する.

指数 γ と公比rを変化した時,正しい故障原因の可能性 が 0.8 以上の部分 (図上部の黒) と、誤った故障原因の可 能性が 0.6 以下の部分 (図下部の白) を図1に示す. 図よ り解るように、両者の境界における γ とrの組み合わせを 用いることによって、これらの故障原因を可能性の差 0.2 で区別出来る.

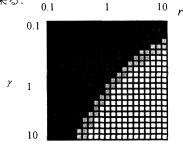


図 1. r と γ に対する可能性の変化

2 個の故障に適用した場合を下の表に示す.変更前は従 来の方法,変更後は本方法を適用した場合の値である.

表 1. 本方法の適用例

	シール部の接触				ロータの接触			
i	4	3	2	1	4	3	2	1
$h(x_i)$	1	0.98	0.8	0.78	0.98	0.65	0.63	0.33
$g(x_i)$	0.22	0.26	0.26	0.26	0.26	0.26	0.26	0.22
変更前	可能性=0.88(γ=1)				可能性=0.66(γ=1)			
変更後	可能性=0.83 (γ=2)				可能性=0.54 (γ=2)			

5. まとめ

回転機器故障診断システムの診断精度を向上させるた めのファジイ測度の γ及び重みの決定方法を示した. また 実際の故障診断に適用した例を併せて示した. 今後はこ れらの値を解析的に決定する方法について検討する予定 である.

参考文献

[1]井口広明他, "回転機器異常診断システムにおけるファ ジイ測度に関する考察,"平成 18 年度電子情報通信学会 信越支部大会講演論文集, p.164, 2006.