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Development of Friction-Damping Vibration Control Device
for Low-Rise Buildings

Jun TABUTI Masashi KATO Hideo HOZUMI Masato SAEKI

Damage to buildings in Japan during large earthquakes is seen mostly in low-rise
buildings which tends to resonate with the earthquake ground motion. In this paper, a
novel vibration control device that utilizes frictional forces is presented aimed towards
application in low-rise buildings. Figure 1 shows a diagram of the installed damping device.
The proposed vibration control device, as shown in the detailed drawing in Figure 2, has a
structure in which contact with the beam occurs through the action of spring force alone,
such that when the building is deformed in an earthquake, damping occurs through the
action of frictional forces. In order to evaluate the device, vibration experiments were
carried out on a miniature model, as shown in Figure 3. The investigation aimed to: 1)
ascertain the appropriate rigidity for the parts on which the damping device is to be
installed, 2) analyze the suitable spring tensions and frictional forces, and 3) evaluate the
damping effects and construct a vibration model. The results confirmed that the vibration
control device confers significant damping in the natural period range of low-rise buildings.
In addition, in operation of the device, there is no obvious resonance point in the natural

period range.
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k /k Table 1 Stiffness of frames for vibration tests
r 0 N/mm
P1 P3 P4 P5 P8
A |kp 103 123 135 156 325
ko=852 [kr 176 380 50.6 710 2370
kr/ko 021 0.45 0.59 0.83 2.78
P1 P3 P5
Bw [kp 190 211 241
. ko=173 [kr 183 372 67.0
Fig.5 kr/ko 0.11 0.22 039
P1 P2 P3 P4 P5
B'P3'15ON'2.43HZ'0.3G B kp 196 201 211 224 241
ko=172 |kr 174 248 372 482 67.0
kr/ko 0.10 0.14 0.22 0.28 0.39
P5 P6 P7 P8
B P3 cw  [kp 684 723 797 822
ko=576 |kr 67.8 124 183 237
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Table 2 Response magnification factor of displacement and damping factor

PO P1 P3 P4 P5 P8 PO P1 P2 P3 2 P5
Hz 1.73(0.58) |1.86(0.54) [2.04(0.49) [2.14(0.47) [2.28(0.44) [3.39(0.29) Hz 2.43(0.41) [2.48(0.40) [2.53(0.40) [2.63(0.38) |2.68(0.37) [2.82(0.35)
A |Amm) 115 138 102 9.1 11.0 24 B |A(mm) 8.7 10.0 93 121 121 12.7
A/DSs 333 414 320 314 438 196 A/DSs 304 40.0 37.9 347 36.9 416
ho 0.015' 0.0121 0.0156 0.0159 0.0114 0.0255 ho 0.017 0.013 0.013 0.014 0.014 0.012
PO P1 P3 P5 PO P5 P6 P7 P8
Hz 2.10(0.48) |2.19(0.46) |2.28(0.44) [2.46(0.41) Hz 3.70(0.27) |3.85(0.26) |4.05(0.25) |4.33(0.23) [4.41(0.23)
Bw |A(mm) 154 97 14.6 16.6 Ccw  |Amm) 883 85 8.7 75 6.3
A/DSs 27.2 171 25.8 243 A/DSs 341 34.0 36.8 347 304
ho 0.0184 0.0292 0.0194 0.0206 ho 0.0147 0.0147 0.0136 0.0144 0.0164
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